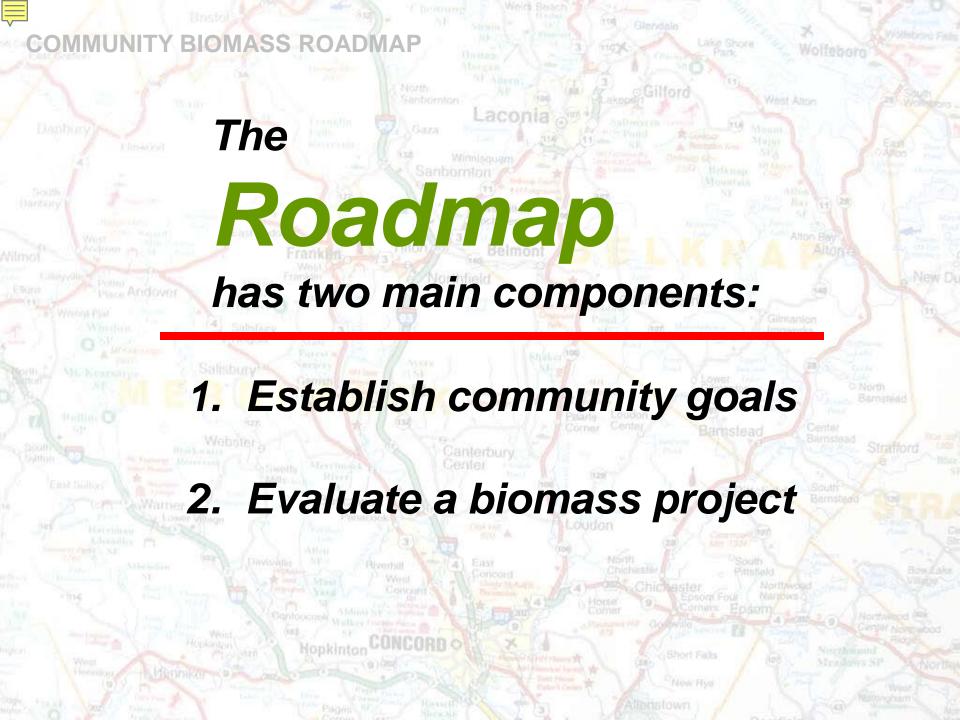
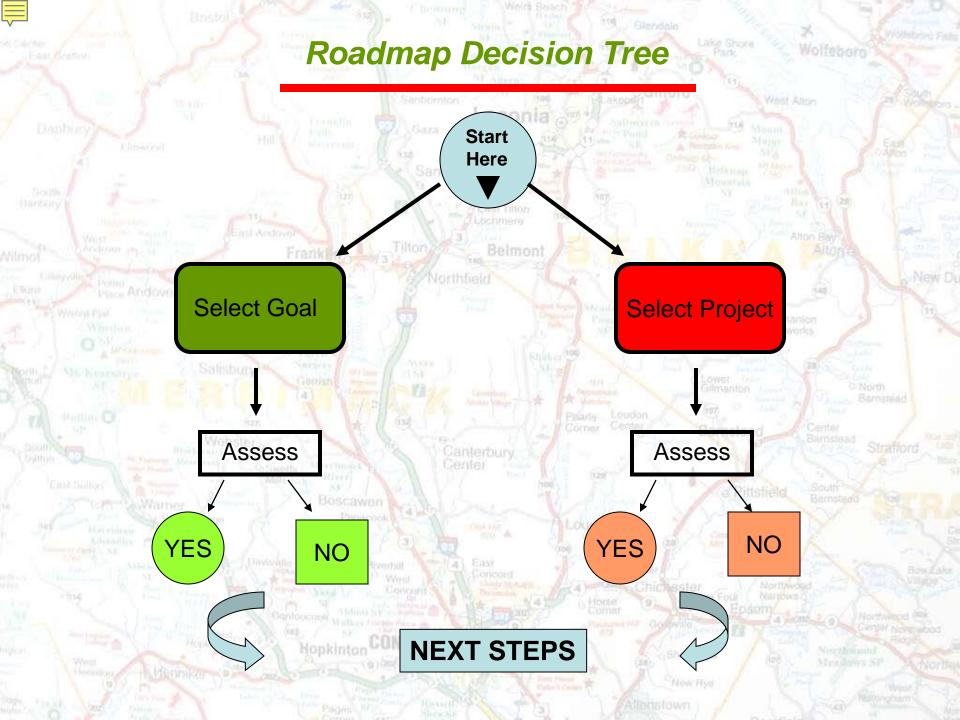


Contents

Introduction to the Community Biomass Roadmap	9					
Roadmap Decision Tree	13					
Common Occasions (and Annual)						
Common Questions (and Answers)						
about Woody Biomass Heat	25					
Community Engagement	33					
Summary Worksheets	41					
► Community Goals	55					
G1. We Have Lower Energy Costs	59					
G2. We Are Energy Independent	73					
G3. Our Energy is Reliable	85					
G4. We Emit Less Carbon	95					
G5. We Rely on Renewable Energy Resources	107					
G6. We Are Energy Efficient	117					
G7. We Have a Strong Local Economy	129					
Transition from Community Goals to Evaluate a Biomass Project	139					
Evaluate a Biomass Project	138					
► Evaluate a Biomass Project	143					
P1. Project Characteristics	149					
P2. Building Information	17					
P3. Existing Fuel Use	179					
P4. Existing Heating and Distribution System	198					
P5. Biomass Energy System	203					
P6. Biomass Fuel	219					
P7. Emissions, Permitting, and Air Quality	24					
Transition from Evaluate a Biomass Project to Next Steps	250					


Next Steps	253
Appendices	259
A. Amount of Existing Fuel Use Replaced by Biomass	261
B. Combined Heat and Power (CHP)	263
C. Funding Opportunities	265
D. Assumptions	275
E. Blank Tables	277
F. Common Units and Biomass Heating Glossary	303



Community District Energy:

The use of a central heating plant to provide heat or combined heat and power (CHP) to multiple buildings using buried pipes to distribute the energy.

Community Engagement

- Makes good use of local expertise
- Allows people to gain new information
- Allows leaders to gauge community interest
- Result is better, well-informed decision-making

Community Energy goals

May include the following:

- We Have Lower Energy Costs
- We Are Energy Independent
- Our Energy is Reliable
- We Emit Less Carbon
- We Rely on Renewable Energy Resources
- We Are Energy Efficient
- We Have a Strong Local Economy

► COMMUNITY GOAL 1

G1. We Have Lower Energy Costs

DEFINITION: We spend less on energy and our energy spending is relatively stable.

Introduction

Energy Costs

▶ We Are Energy

Our Energy

s Reliable

▶ We Emit

► We Rely on

► We Are Energy Efficient

We Have a

Once capital investments are made, biomass fuels used for heating are significantly less expensive than fossil fuels on a cost/Btu basis. Fuel savings cover the cost of capital investments over some period of time. Long-term contracts for biomass can provide stable pricing with little impact from global economic and political events. The price of biomass fuels in the New England area has remained very stable in the last 20 years and is likely to fluctuate much less than the fossil fuel prices.

While biomass fuel pricing tends to be more stable than fossil fuels, the market does still fluctuate. The best way to predict the cost of your biomass fuel is to contact local providers (go to Section P6. Biomass Fuel). In New Hampshire, the average price for biomass in 2009-2010 was approximately \$55 per ton of delivered woodchips and \$250 per ton of delivered pellets (this is bulk delivery of pellets by truck to silo, bagged pellets are more). You should confirm prices in your area before completing this section. Go to Section P6. Biomass Fuel.

If you do not know which building(s) to assess for biomass heat, go to ▶ Section P1a. Selecting a Project.

IN THIS SECTION

- G1a. Existing Fuel Costs
- G1b. Estimated Fuel Cost Savings
- G1c. Estimated Fuel Cost Savings with a District Biomass System
 Owned and Operated by an Independent Entity
- G1d. Payback / Life-Cycle Costs
- G1e. Stability of Fuel Pricing
- G1f. Summary

P1a. Selecting a Project.

G1a. Existing Fuel Costs

Complete the following table to determine the existing fuel costs for each building being evaluated for a biomass heating system:

Instructions: Existing Fuel Costs

COLUMN 1: List each building that will be affected by the biomass project.

COLUMN 2: List the type of fuel(s) currently being used to heat each building. (For more detailed information on collecting fuel use/cost data, go to P3. Existing Fuel Use).

COLUMN 3: Identify how much of each type of fuel you are using per year. Check if the fuel used for heating includes fuel for domestic hot water (DHW). If the fuel used for heating does not include DHW, get the estimated consumption of fuel for DHW from the building owner/maintenance staff and add it to your Current Annual Usage. If no estimates are available add 11% of the fuel consumption for space heating for DHW. Annual Usage for Heat ____ x 11% = DHW. (Add this to Current Annual Usage for heat) in column 3.

COLUMN 4: Identify how much you are paying (per gallon, kWh, etc.) for each type of fuel.

COLUMN 5: Multiply column 3 by column 4 to determine the average annual cost of each type of fuel.

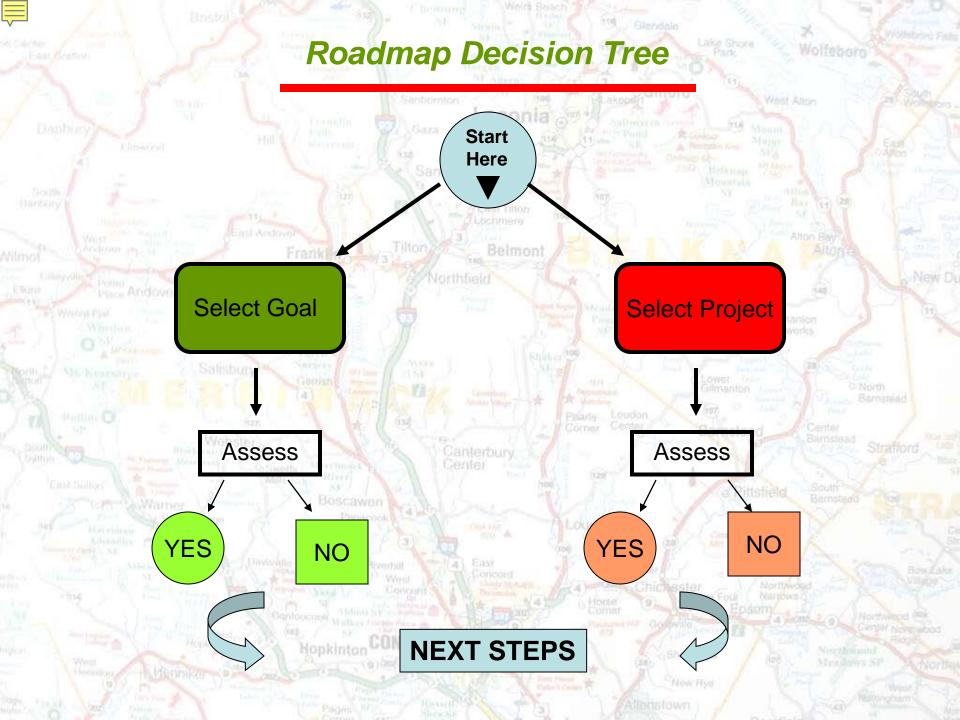
COLUMN 6: Multiply current annual usage (column 3) by 15% (see Appendix A for an explanation of this number) to identify how much of your existing fuel sources you will be using after the biomass energy system has been installed.

COLUMN 7: Multiply column 6 by column 4 to determine the average annual cost of non-biomass fuel you will need with the proposed biomass system.

G1a. EXISTING FUEL COSTS						
COLUMN 1	COLUMN 2	COLUMN 3	COLUMN 4	COLUMN 5	COLUMN 6	COLUMN 7
Building	Type of Fuel	Current Annual Usage	Current Average Price	Average Annual Cost	Average Usage with Biomass System	Average Annual Cost with Biomass System

G1a EXAMPLE. EXISTING FUEL COSTS						
COLUMN 1	COLUMN 2	COLUMN 3	COLUMN 4	COLUMN 5	COLUMN 6	COLUMN 7
Building	Type of Fuel	Current Annual Usage	Current Average Price	Average Annual Cost	Average Usage with Biomass System	Average Annual Cost with Biomass System
School	Fuel Oil	100,000 gallons	\$2.50	\$250,000	15,000 gallons	\$37,500
Town Hall	Propane	8,000 gallons	\$2.00	\$16,000	1,200 gallons	\$2,400

G1f. Summary


Complete the summary table below with information from preceding tables in section G1. (Columns with the shaded background in preceding tables show which information should be transferred to the summary table.)

Building	Current Annual Fuel Costs	Estimated Annual Fuel Costs with Biomass	Estimated Annual Fuel Savings with Biomass	Pay-Back Period	Price Stabilit (G1e)
	1				*

The cost of woodchips used for heating fuel tends to increase more slowly and has historically been much more stable in price over the past two decades than fossil fuels.

Biomass Project Evaluation

- Project Characteristics
- Building Information
- Existing Fuel Use
- Existing Heat & Distribution System
- Biomass Energy System
- Biomass Fuel
- Emissions, Permitting & Air Quality

- Project
 Characteristics
- Building Information
- Existing Fuel Use
- Existing Heating and Distribution
 System
- Biomass Energy System
- Biomass Fuel
- Emissions, Permitting, and Air Quality

► EVALUATE A BIOMASS PROJECT 1

P1. Project Characteristics

Biomass energy systems can be used at multiple scales and in multiple types of projects. The *Roadmap* will help communities understand the characteristics of biomass energy systems for a single building, multiple buildings with individual biomass boilers, and district heat systems (one heating plant for multiple buildings).

NOTE: Combined heat and power (CHP) projects are found to be not as cost effective as the heating only projects with the present policy and incentives framework. It is recommended that the community should consider heating projects initially. The Roadmap does not analyze CHP projects. If the community continues to be interested in a CHP system, this can be evaluated in the pre-feasibility study (see Next Steps). For more information on CHP, see Appendix B Combined Heat and Power.

IN THIS SECTION

			_	
P1a.	Sel	ecting	a Pro	ject

P1b. Biomass Heat for a Single Building

P1c. Building Ownership (Single Building)

P1d. Biomass Heat for Multiple Buildings

P1e. Defining a Multi-Building Area for District Heating System

P1f. Community District Projects

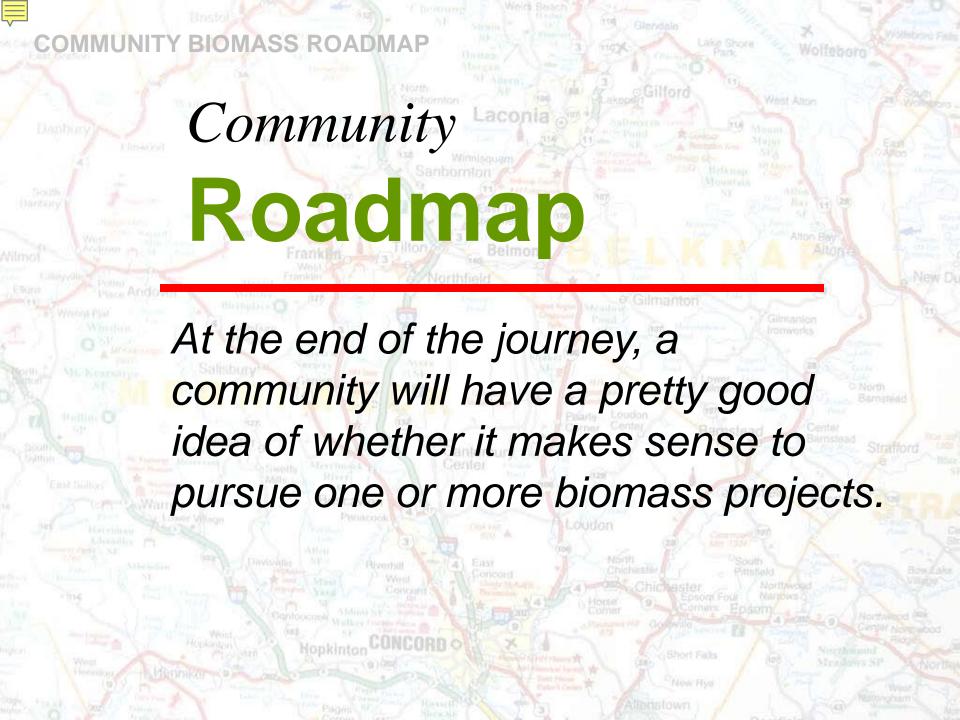
P1g. Campus / Multi-Building Projects with Single Owner

P1h. Identifying your Multi-Building Area - Anchor Loads

P1i. Building Ownership (District / Campus Heat)

P1j. Heating and Cooling / Chilling Projects

Next Steps


Following completion of the Roadmap, if you determine that your community has a biomass project that is likely to be viable and wish to move toward implementation, a range of public outreach and education, community capacity, technical work, financing, and logistical issues will need to be addressed. In this section, these major categories of implementation are outlined. Communities will need internal capacity and staffing and one or more development partners to move forward effectively.

IN THIS SECTION

- NS1. Pre-Feasibility Study and Fuel Supply Assessment
- NS2. Resource Assessment
- NS3 Community Outreach & Education
- NS4. Formal Commitment and Leadership Entity
- NS5. Development Partners
- NS6. Financing
- NS7. Selection of Engineers and Vendors

Additional Implementation Considerations for District Heating System

- NS8. Ownership Model for District Heating System
- NS9. Community Outreach & Subscription Process for District Heating System

